Skip to contents

FRED

The St. Louis Fed Database FRED contain about +800k time series. To avoid filling up the Robonomist Server table of content, individual time series from FRED are not directly visible in the search function. Instead, you can list all “sources” and “releases” with:

data("fred/")
#> # Robonomist Database search results
#>    id             title                                                   lang 
#>    <r_id>         <chr>                                                   <chr>
#>  1 fred/source=1  Board of Governors of the Federal Reserve System (US)   en   
#>  2 fred/source=3  Federal Reserve Bank of Philadelphia                    en   
#>  3 fred/source=4  Federal Reserve Bank of St. Louis                       en   
#>  4 fred/source=6  Federal Financial Institutions Examination Council (US) en   
#>  5 fred/source=11 Dow Jones & Company                                     en   
#>  6 fred/source=14 University of Michigan                                  en   
#>  7 fred/source=15 Council of Economic Advisers (US)                       en   
#>  8 fred/source=16 U.S. Office of Management and Budget                    en   
#>  9 fred/source=17 U.S. Congressional Budget Office                        en   
#> 10 fred/source=18 U.S. Bureau of Economic Analysis                        en   
#> # ℹ 419 more rows

The database hierarchy is very simple: Sources contain releases, and releases contain time series.

To list all releases, for example, in source 1 (Board of Governors of the Federal Reserve System), call:

data("fred/source=1")
#> ⠙ Requesting data
#>  Requesting data [251ms]
#> 
#> # Robonomist id: fred/source=1
#> # Title:         Board of Governors of the Federal Reserve System (US)
#> # Vintage:       2025-01-16
#> # A tibble:      35 × 5
#>    release_id name                                     press_release link  notes
#>  *      <int> <chr>                                    <lgl>         <chr> <chr>
#>  1         13 G.17 Industrial Production and Capacity… TRUE          http… "For…
#>  2         14 G.19 Consumer Credit                     TRUE          http… "For…
#>  3         15 G.5 Foreign Exchange Rates               TRUE          http… "For…
#>  4         17 H.10 Foreign Exchange Rates              TRUE          http… "For…
#>  5         18 H.15 Selected Interest Rates             TRUE          http… "For…
#>  6         19 H.3 Aggregate Reserves of Depository In… TRUE          http… "The…
#>  7         20 H.4.1 Factors Affecting Reserve Balances TRUE          http… "For…
#>  8         21 H.6 Money Stock Measures                 TRUE          http… "For…
#>  9         22 H.8 Assets and Liabilities of Commercia… TRUE          http… "For…
#> 10         52 Z.1 Financial Accounts of the United St… TRUE          http… "The…
#> # ℹ 25 more rows

To list all time series in the first release on the list (Industrial Production and Capacity Utilization), call:

data("fred/release=13")
#> ⠙ Requesting data
#>  Requesting data [999ms]
#> 
#> # Robonomist id: fred/release=13
#> # Title:         G.17 Industrial Production and Capacity Utilization
#> # Vintage:       2024-12-17
#> # A tibble:      2,624 × 14
#>    series_id   title observation_start observation_end frequency frequency_short
#>  * <chr>       <chr> <chr>             <chr>           <chr>     <chr>          
#>  1 CAPB00004A  Indu… 1948-01-01        2023-01-01      Annual    A              
#>  2 CAPB00004S  Indu… 1948-01-01        2024-11-01      Monthly   M              
#>  3 CAPB00004SQ Indu… 1948-01-01        2024-07-01      Quarterly Q              
#>  4 CAPB50001A  Indu… 1967-01-01        2023-01-01      Annual    A              
#>  5 CAPB50001S  Indu… 1967-01-01        2024-11-01      Monthly   M              
#>  6 CAPB50001SQ Indu… 1967-01-01        2024-07-01      Quarterly Q              
#>  7 CAPB5610CA  Indu… 1967-01-01        2023-01-01      Annual    A              
#>  8 CAPB5610CS  Indu… 1967-01-01        2024-11-01      Monthly   M              
#>  9 CAPB5610CSQ Indu… 1967-01-01        2024-07-01      Quarterly Q              
#> 10 CAPB562A3CA Indu… 1948-01-01        2023-01-01      Annual    A              
#> # ℹ 2,614 more rows
#> # ℹ 8 more variables: units <chr>, units_short <chr>,
#> #   seasonal_adjustment <chr>, seasonal_adjustment_short <chr>,
#> #   last_updated <chr>, popularity <int>, group_popularity <int>, notes <chr>

To download a time series, use the get_data function:

data_get("fred/CAPB00004S")
#> ⠙ Requesting get
#>  Requesting get [1.1s]
#> 
#> # Robonomist id: fred/CAPB00004S
#> # Title:         Industrial Capacity: Manufacturing (SIC)
#> # Vintage:       2024-12-17 14:19:49
#> # A tibble:      923 × 7
#>    series_id  Title       Frequency Units `Seasonal adjustment` time       value
#>  * <chr>      <chr>       <chr>     <chr> <chr>                 <date>     <dbl>
#>  1 CAPB00004S Industrial… Monthly   Inde… Seasonally Adjusted   1948-01-01  16.2
#>  2 CAPB00004S Industrial… Monthly   Inde… Seasonally Adjusted   1948-02-01  16.3
#>  3 CAPB00004S Industrial… Monthly   Inde… Seasonally Adjusted   1948-03-01  16.4
#>  4 CAPB00004S Industrial… Monthly   Inde… Seasonally Adjusted   1948-04-01  16.5
#>  5 CAPB00004S Industrial… Monthly   Inde… Seasonally Adjusted   1948-05-01  16.6
#>  6 CAPB00004S Industrial… Monthly   Inde… Seasonally Adjusted   1948-06-01  16.7
#>  7 CAPB00004S Industrial… Monthly   Inde… Seasonally Adjusted   1948-07-01  16.7
#>  8 CAPB00004S Industrial… Monthly   Inde… Seasonally Adjusted   1948-08-01  16.8
#>  9 CAPB00004S Industrial… Monthly   Inde… Seasonally Adjusted   1948-09-01  16.9
#> 10 CAPB00004S Industrial… Monthly   Inde… Seasonally Adjusted   1948-10-01  17.0
#> # ℹ 913 more rows

You can also retrieve multiple time series by providing a vector of ids:

d <- data_get(c("fred/CAPB5610CS", "fred/CAPB5640CS"))
#> ⠙ Requesting get
#>  Requesting get [1.7s]
#> 
d
#> # Robonomist id: fred/CAPB5610CS
#> # Title:         Industrial Capacity: Stage-of-Process: Crude Processing
#> # Vintage:       2024-12-17 14:20:05
#> # A tibble:      1,618 × 7
#>    series_id  Title       Frequency Units `Seasonal adjustment` time       value
#>    <chr>      <chr>       <chr>     <chr> <chr>                 <date>     <dbl>
#>  1 CAPB5610CS Industrial… Monthly   Inde… Seasonally Adjusted   1967-01-01  72.1
#>  2 CAPB5610CS Industrial… Monthly   Inde… Seasonally Adjusted   1967-02-01  72.4
#>  3 CAPB5610CS Industrial… Monthly   Inde… Seasonally Adjusted   1967-03-01  72.8
#>  4 CAPB5610CS Industrial… Monthly   Inde… Seasonally Adjusted   1967-04-01  73.1
#>  5 CAPB5610CS Industrial… Monthly   Inde… Seasonally Adjusted   1967-05-01  73.4
#>  6 CAPB5610CS Industrial… Monthly   Inde… Seasonally Adjusted   1967-06-01  73.8
#>  7 CAPB5610CS Industrial… Monthly   Inde… Seasonally Adjusted   1967-07-01  74.1
#>  8 CAPB5610CS Industrial… Monthly   Inde… Seasonally Adjusted   1967-08-01  74.4
#>  9 CAPB5610CS Industrial… Monthly   Inde… Seasonally Adjusted   1967-09-01  74.8
#> 10 CAPB5610CS Industrial… Monthly   Inde… Seasonally Adjusted   1967-10-01  75.1
#> # ℹ 1,608 more rows
ggplot(d, aes(time, value, color = Title)) +
  geom_line() +
  theme(legend.position = "bottom", legend.direction = "vertical")

The FRED api also allows some basic time series transformations with the units parameter:

data_get(c("fred/CAPB5610CS", "fred/CAPB5640CS"), units = "pc1") |>
  drop_na() |>
  ggplot(aes(time, value, color = Title)) +
  geom_line() +
  theme(legend.position = "bottom", legend.direction = "vertical")
#> ⠙ Requesting get
#>  Requesting get [1.1s]
#> 

Allowed values for units:

  • lin = Levels (No transformation)
  • chg = Change
  • ch1 = Change from Year Ago
  • pch = Percent Change
  • pc1 = Percent Change from Year Ago
  • pca = Compounded Annual Rate of Change
  • cch = Continuously Compounded Rate of Change
  • cca = Continuously Compounded Annual Rate of Change
  • log = Natural Log

Similarly time series can be temporally aggregated with the frequency and aggregation_method parameters:

data_get(c("fred/CAPB5610CS", "fred/CAPB5640CS"), units = "pc1", frequency = "a", aggregation_method = "sum") |>
  drop_na() |>
  ggplot(aes(time, value, color = Title)) +
  geom_line() +
  theme(legend.position = "bottom", legend.direction = "vertical")
#> ⠙ Requesting get
#>  Requesting get [1.2s]
#> 

Allowed values for frequency:

  • d = Daily
  • w = Weekly
  • bw = Biweekly
  • m = Monthly
  • q = Quarterly
  • sa = Semiannual
  • a = Annual

Allowed values for aggregation_method:

  • avg = Average
  • sum = Sum
  • eop = End of Period