Skip to contents

The robonomistClient package is a robust R client for effortless access to statistical data. It empowers researchers, analysts, and developers to easily discover, retrieve, and analyze up-to-date data from numerous national and international sources — all in tidy, analysis-ready formats.

Key Features

The main features of robonomistClient include:

Comprehensive Data Coverage

Access data from national statistical agencies, international organizations, and regional sources — all in one place. Spend less time searching for data and more time analyzing it.

  • Eurostat, OECD, World Bank, European Central Bank, and more.

High Data Fidelity and Trust

All data is reliable and accurately reflects the information from official statistical agencies. Datasets include comprehensive metadata, ensuring your analysis is based on credible and transparent information.

  • Full transparency on data sources.
  • Detailed metadata included.

Flexibility in Data Retrieval

Customize the way data is retrieved to fit your specific needs:

  • Multilingual support
  • Choose between variable labels or codes.
  • Interpret time variables as dates or raw values.

Seamless Integration for Dynamic Workflows

Designed for robust integration with R, robonomistClient makes it easy to build dynamic documents and automatically updating applications:

  • Provides a stable API, reducing disruptions from changes in official statistics APIs.
  • Focus on insights, not data wrangling.

Datasources

The robonomistClient package provides seamless and efficient access to a wide range of datasources via the Robonomist Data Server. With support for 101 636 up-to-date data tables across 60 distinct datasources and 13 languages, the package is designed to streamline your data analysis workflow.

International Datasources

  • Global Institutions: OECD, International Monetary Fund (IMF), World Bank, United Nations Economic Commission for Europe Statistical Database (UNECE), United Nations Conference on Trade and Development (UNCTAD), FAO (Food and Agriculture Organization), Bank for International Settlements (BIS).
  • European Union: Eurostat, European Commission, European Central Bank (ECB).
  • Nordic Countries: Statistics Sweden, Swedish National Institute of Economic Research, Swedish Agricultural Agency, Statistics Norway, Statistics Denmark, Statistics Iceland, Statistics Estonia, Nordic Statistics Database.

Finnish Datasources

  • Statistics Finland: StatFin, StatFin archive databases, Municipal figures & financial data, Paavo postal code area statistics, experimental statistics, immigrants and integration database.
  • Regional Data: Helsingin seudun aluesarjat -tilastotietokanta, Helsingin ympäristötilasto.
  • National Agencies: Finnish Tax Administration, Finnish Centre for Pensions, Natural Resources Institute Finland (LUKE), Traficom (Finnish Transport and Communications Agency), Customs Finland, THL Sotkanet, Vipunen (Education Statistics Finland), Fingrid, TutkiHallintoa.fi (Valtiokonttori).

Thematic & Specialized Datasources

  • Energy & Environment: Entso-E Transparency Platform, U.S. Energy Information Administration database, Fingrid.
  • Financial: Deutsche Bundesbank time series database, FRED (Federal Reserve Economic Data**.
  • Health & Pandemic Data: THL Epirapo, ECDC.

This list highlights just some of the many datasources available through the robonomistClient package.

Getting started

To set up a Robonomist Data Server for your organization, contact .

1. Install the Package

Install the package from GitHub:

# Install devtools if needed
# install.packages("devtools")

# Install robonomistClient from GitHub
devtools::install_github("robonomist/robonomistClient")

2. Set Up Your Connection

Set the hostname and access token for your Robonomist Data Server using set_robonomist_server():

library(robonomistClient)

set_robonomist_server(hostname = "hostname.com", access_token = "abc")

3. Explore Available Datasources

See available datasources with the datasources() function:

#> # Robonomist Server Datasources
#>    dataset          title                                                          languages datasource available
#>    <r_dataset>      <chr>                                                          <iso2>    <chr>      <lgl>    
#>  1 StatFin          Statistics Finland, StatFin database                           fi,sv,en  StatFin    TRUE     
#>  2 StatFin_Passiivi Statistics Finland, StatFin archive database                   fi,sv,en  StatFin_P… TRUE     
#>  3 Vero             Finnish Tax Administration statistical database                fi,sv,en  Vero       TRUE     
#>  4 ec               European Commission's Business and Consumer Surveys            en        EC         TRUE     
#>  5 kunnat           Key statistics of municipalities, Statistics Finland           fi,sv,en  KuntienAv… TRUE     
#>  6 kunnat           Financial data reported by municipalities and joint municipal… fi,sv,en  KuntienTa… TRUE     
#>  7 paavo            Statistics Finland's Paavo database                            fi,sv,en  Paavo      TRUE     
#>  8 tulli            Finnish Customs, Uljas Statistical Database                    fi,sv,en  Tulli      TRUE     
#>  9 luke             Statistics database of Natural Resources Institute Finland (L… fi,sv,en  Luke       TRUE     
#> 10 etk              Finnish Centre for Pensions' statistical database              fi,sv,en  ETK        TRUE     
#> # ℹ 50 more rows

4. Search and Retrieve Data Tables

Use the data() function to search and list data tables:

#> # Robonomist Database search results
#>    id                                      title                                                            lang 
#>    <r_id>                                  <chr>                                                            <chr>
#>  1 StatFin/adopt/statfin_adopt_pxt_11lv.px 11lv -- Adoptiot lapsen syntymämaan, ikäryhmän ja sukupuolen se… fi   
#>  2 StatFin/adopt/statfin_adopt_pxt_13qh.px 13qh -- Adoptiot adoptoitavan vanhempien mukaan, 1999-2024       fi   
#>  3 StatFin/aku/statfin_aku_pxt_12dz.px     12dz -- Aikuiskoulutukseen osallistuminen (ml. työhön tai ammat… fi   
#>  4 StatFin/aku/statfin_aku_pxt_12ea.px     12ea -- Aikuiskoulutukseen osallistuminen (ml. työhön tai ammat… fi   
#>  5 StatFin/aku/statfin_aku_pxt_14bu.px     14bu -- Aikuiskoulutukseen osallistuminen (ml. työhön tai ammat… fi   
#>  6 StatFin/aku/statfin_aku_pxt_14bv.px     14bv -- Aikuiskoulutukseen osallistuminen (ml. työhön tai ammat… fi   
#>  7 StatFin/ava/statfin_ava_pxt_12a9.px     12a9 -- Perusopetuksen vuosiluokkien 1-9 ja lisäopetuksen suori… fi   
#>  8 StatFin/ava/statfin_ava_pxt_12aa.px     12aa -- Aikuisten perusopetuksen oppimäärän suorittaneiden kiel… fi   
#>  9 StatFin/ava/statfin_ava_pxt_12ad.px     12ad -- Toisen asteen opiskelijoiden valitsemat vieraat kielet,… fi   
#> 10 StatFin/ava/statfin_ava_pxt_139d.px     139d -- Toisen asteen opiskelijoiden valitsemien vieraiden kiel… fi   
#> # ℹ 179,294 more rows

Search for tables related to employment:

data("employment eurostat")
#> # Robonomist Database search results
#>    id                           title                                                                       lang 
#>    <r_id>                       <chr>                                                                       <chr>
#>  1 eurostat/bd_9pm_r2           High growth enterprises (growth by 10% or more) and related employment by … en   
#>  2 eurostat/bd_9pm_r2$dv_2421   High growth enterprises (growth by 10% or more) and related employment by … en   
#>  3 eurostat/bd_hg               High growth enterprises and related employment by NACE Rev. 2 activity      en   
#>  4 eurostat/bd_hg$dv_2307       High growth enterprises and related employment by NACE Rev. 2 activity      en   
#>  5 eurostat/bd_hg_micro         High growth micro enterprises and related employment by NACE Rev. 2 activi… en   
#>  6 eurostat/bd_hg_micro$dv_2422 High growth micro enterprises and related employment by NACE Rev. 2 activi… en   
#>  7 eurostat/bs_bs10_00          Turnover by client specialisation and employment size class (2000)          en   
#>  8 eurostat/bs_bs1_01           SBS variables by product specialisation and by employment size class for d… en   
#>  9 eurostat/bs_bs1_03           SBS variables by employment size class for div 72 and 74 (2003)             en   
#> 10 eurostat/bs_bs1_04           Main economic variables by employment size class (2004)                     en   
#> # ℹ 511 more rows

Search for a specific dataset in another language:

data("eurostat/ lfs", lang = "de")

You can search with keywords, partial names, or dataset IDs.

5. Retrieve a Specific Data Table

If you know the ID of a data table, retrieve it directly:

data("eurostat/bd_hg") |> tail()
#> # Robonomist id: eurostat/bd_hg
#> # Title:         High growth enterprises and related employment by NACE Rev. 2 activity
#> # Vintage:       2025-10-24 23:00:00
#> # A tibble:      6 × 6
#>   freq   indic_sbs                                                                 nace_r2 geo   time       value
#>   <chr>  <chr>                                                                     <chr>   <chr> <date>     <dbl>
#> 1 Annual Employees in young high-growth enterprises measured in employment - numb… Other … Port… 2023-01-01    NA
#> 2 Annual Employees in young high-growth enterprises measured in employment - numb… Other … Roma… 2023-01-01   112
#> 3 Annual Employees in young high-growth enterprises measured in employment - numb… Other … Swed… 2023-01-01    36
#> 4 Annual Employees in young high-growth enterprises measured in employment - numb… Other … Slov… 2023-01-01     0
#> 5 Annual Employees in young high-growth enterprises measured in employment - numb… Other … Slov… 2023-01-01     0
#> 6 Annual Employees in young high-growth enterprises measured in employment - numb… Other … Türk… 2023-01-01    NA

Copy a dataset link from your browser and pass it to data(). For example, if you find a dataset on the OECD website, you can retrieve it like this:

data("https://data-explorer.oecd.org/vis?tm=sna&pg=0&fs[0]=Measure%2C0%7CAquaculture%20production%23AQUA_PD%23&fc=Measure&snb=1&vw=tb&df[ds]=dsDisseminateFinalDMZ&df[id]=DSD_FISH_PROD%40DF_FISH_AQUA&df[ag]=OECD.TAD.ARP&df[vs]=1.0&pd=2010%2C&dq=.A.._T.T&ly[rw]=REF_AREA&ly[cl]=TIME_PERIOD&to[TIME_PERIOD]=false")
#> ℹ The URL points to a data table in dataset "oecd".

#> ℹ For direct data retrieval, use:
#> >  data_get("oecd/DSD_FISH_PROD@DF_FISH_AQUA..A.._T.T")

#> # Robonomist id: oecd/DSD_FISH_PROD@DF_FISH_AQUA
#> # Title:         Aquaculture production
#> # Vintage:       2025-03-10 14:23:35
#> # A tibble:      1,456 × 10
#>    REF_AREA  FREQ   MEASURE                SPECIES UNIT_MEASURE time       value UNIT_MULT DECIMALS CONVENTION
#>  * <chr>     <chr>  <chr>                  <chr>   <chr>        <date>     <dbl> <chr>     <chr>    <chr>     
#>  1 Argentina Annual Aquaculture production Total   Tonnes       1995-01-01  1474 0         0        LW        
#>  2 Argentina Annual Aquaculture production Total   Tonnes       1996-01-01  1322 0         0        LW        
#>  3 Argentina Annual Aquaculture production Total   Tonnes       1997-01-01  1314 0         0        LW        
#>  4 Argentina Annual Aquaculture production Total   Tonnes       1998-01-01  1040 0         0        LW        
#>  5 Argentina Annual Aquaculture production Total   Tonnes       1999-01-01  1218 0         0        LW        
#>  6 Argentina Annual Aquaculture production Total   Tonnes       2000-01-01  1784 0         0        LW        
#>  7 Argentina Annual Aquaculture production Total   Tonnes       2001-01-01  1340 0         0        LW        
#>  8 Argentina Annual Aquaculture production Total   Tonnes       2002-01-01  1457 0         0        LW        
#>  9 Argentina Annual Aquaculture production Total   Tonnes       2003-01-01  1647 0         0        LW        
#> 10 Argentina Annual Aquaculture production Total   Tonnes       2004-01-01  1848 0         0        LW        
#> # ℹ 1,446 more rows

7. Retrieve Data for Production Use

robonomistClient is a stable platform for building dynamic documents and real-time data applications. For production use, use the data_get() function with a data table ID for consistent results.

# Fetch a specific dataset using its ID for production use
production_data <- data_get("StatFin/synt/statfin_synt_pxt_12dx.px")

Further Reading

For more detailed information and examples, check the package documentation: